
On Synthesis of Runtime Security Monitor for
Real-time IoT Applications

Muhammad Taimoor Khan
School of Computing and Mathematical Sciences

University of Greenwich, London, UK
m.khan@gre.ac.uk

Dimitrios Serpanos
Industrial Systems Institute, RC-ATHENA and

ECE, University of Patras, Patras, Greece
serpanos@ece.upatras.gr

Howard Shrobe
CSAIL, MIT

Cambridge, USA
hes@csail.mit.edu

We report on the evaluation of an efficient and scalable verification method that assures runtime security
of real-time Internet of Things (IoT) applications with strict performance requirements. Modeling known
threats at abstract but practical level is key to assure security of efficient and scalable IoT applications. To
this end, the method classifies set of known attacks into computational, data integrity and communication
attacks. Then, each attack class is decomposed into declarative properties and definitive properties. A
declarative property specifies an attack as a single big-step relation between initial and final state by ignoring
intermediate states, while a definitive property specifies an attack as a sequence of numerous small-step
relations considering all intermediate states between initial and final state. Finally, the declarative properties
are translated into runtime security monitor that assures protection of the application execution against
known threats without defying runtime application’s performance requirements. in particular, we evaluate
the methodology through its application to an energy management application of smart home.

Runtime assurance, smart home, energy management, computational attacks, data integrity attacks,
communication attacks

1. INTRODUCTION

Modern IoT applications aim at providing on
demand services in various critical application
domains, e.g. smart homes, health-care and
automotive vehicles, to name a few. Typically, these
services are implemented as embedded software
applications that remotely and automatically control
the operations of IoT devices according to the
demand as determined and monitored by the
underlying (devices’) sensors. The security and
safety of such applications cannot be established
mainly because of the unreliable sensors, which
may provide incorrect data either due to their
malfunctioning or due to an accidental (by privileged
user) or intentional (by adversary) interference.
Therefore, the incorrect sensor input data may
identify an inaccurate demand, which may result in a
serious threat or a significant loss, e.g. financial loss
for incorrect energy usage - in smart home, threat
to a patient’s life - in health-care. To ensure safety
and security of energy management IoT applications
for smart home, current approaches either employ

encryption based techniques Zhang (2018); Tiloca
(2017) that assure correct data exchange by
sensors or employ data analysis techniques that
monitor sensor data and alarm when some unusual
value is detected Soudan (2018). Alternatively,
some applications employ improved access control
mechanisms that ensure that controller decisions
are consistent with sensor input data. However,
such approaches fail to detect stealthy attacks that
compromise system integrity, e.g. bad data (false
data injection) and bad computations because they
do not comprehend what the application or IoT
device is trying to do. To this end, various run-time
verification methods have been proposed.

Contemporary run-time verification based monitors
assure that an application execution is consistent
with design specification of the application and raises
an alarm when an inconsistency is detected Khan
(2016). However, despite considerable progress in
this area Cassar (2017), these methods cannot
be directly applied to real-time control applications
mainly because they do not consider behavior

© The Authors. Published by BISL. 1
Proceedings of 6th International Symposium for ICS & SCADA Cyber Security Research 2019

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

information of an IoT process to detect the threats Li
(2011). Furthermore, such methods do not compare
application execution with the large number of known
threats (approx. 588 attack patterns - CAPEC List
(2019)). Clearly, comparison of the application
execution with these large number of threats
in addition to the design specification requires
significant verification time, which may hinder
the performance requirements of the application
resulting in unpleasant incidents.

Recently, several approaches aimed at improving
runtime verification performance by reducing number
of attacks that have to be monitored at runtime
by considering execution environment of the
application. For instance, the program developed in a
specific language is free of various classes of threats
and vulnerabilities, e.g., a web application developed
in the UrWeb language Chlipala (2016) is free
from code injection attacks. In another effort Barrho
(2018), compiler operations have been verified that
assure that the compilation is vulnerability free, for
instance, the C compiler (CompCert).

Lately, an implementation of various processor op-
erations have been verified to show absence of
security threats, e.g. ARM Chen (2016). These de-
velopments assure that certain classes of vulnerabil-
ities and security threats cannot happen during ap-
plication execution and thereby significantly reduce
run-time verification overhead. However, these ap-
proaches handle specific vulnerabilities and threats
on one hand and are language and platform specific
on the other hand. Importantly, such approaches do
not consider critical known attacks to applications,
e.g., stealthy and insider attacks. Therefore, they
cannot be directly applied to critical control appli-
cations, e.g. energy management and health-care
control applications, due to their strict performance
requirements and effects of their critical functionality
when attacked.

We consider smart home as a critical control applica-
tion domain with strict performance requirements Li
(2011). Recent developments in IoT devices have
improved security and safety of a variety of smart
home applications. In contrast to typical control sys-
tems, security threats to these applications result
in significant losses and, therefore, require to be
monitored and prevented with high assurance with-
out compromising their performance. For instance,
energy monitoring devices are used for the manage-
ment of energy in smart homes. The components
of such systems are wirelessly connected, e.g., the
energy monitor, energy distributor, and remote con-
trol that forms a real-time monitoring and feedback
loop. Typically, these systems are vulnerable due to

unreliable wireless and sensor based communica-
tion. An adversary can easily launch attacks to such
applications that may result in significant financial
loss, for instance, by sending incorrect value of
required energy by various appliances wirelessly, by
compromising the command to the energy distributor
remotely that may stop the energy distribution, or
by distributing energy with undesired (i.e., very high)
current.

In contrast to above-mentioned threat detection
mechanisms, we evaluate a verification method
that ensures run-time security and safety of
energy management application of an IoT based
smart home. The method monitors the execution
of control application based on the process
(application) behavior and known attacks. The
behavior of the application includes functional
and nonfunctional (e.g., security, performance)
properties of various components that manages the
IoT control process Khan (2018). The methodology
allows to specify set of known threats to the
application alongside with functional specification.
Based on ARMET Khan (2018), we assure that
design of the control application is free of specific
class of attacks and vulnerabilities. To reduce run-
time verification overhead, the method classifies
the known attacks into computational, data integrity
and communication attacks. Next, we specify
declarative and definitive properties of each class.
In detail, declarative properties are specified as
a one big-step relation between initial (i.e., pre-
conditions) and final state (i.e. post-conditions)
of an logically constituted operation. Finally, we
argue that a security monitor can be generated
from the specification of declarative properties.
The generated monitor assures that the application
execution is protected against known attacks without
compromising real-time performance requirements
of the application. Further details of the method are
discussed in Khan (2019).

The rest of the paper is organized as follows:
Section 2 elaborates modeling of known threat as
discussed in Khan (2019), while Section 3 sketches
generation of run-time security monitor. Importantly,
the contents of the following sections are based on
the material from the original approach Khan (2019).

2. MODELING KNOWN THREATS

In this section, we sketch the approach based on the
material from Khan (2019). Modeling the behavior
of IoT system applications and known threats is
a complex task due to varying behavior of IoT
devices and components. The complexity is directly
proportion to the required run-time verification time.
Therefore, to handle the complexity, we simplify

2

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

the modelling task by specifying the threats in
declarative and definitive properties, where the
former specify an attack class as a single big-
step relation between an initial state and final state
of the operation (ignoring the intermediate details)
and the latter specifies each attack uniquely as
a composition of many small-step relations that
correspond to intermediate states.

We demonstrate the concept of declarative and
definitive properties by modeling the controller for
managing various energy levels.

Example

Consider an energy control application of an IoT
smart home, which has a sensor that monitors
energy consumption and an energy controller that
receives and issues commands for the management
of energy monitor. The main task of the controller is
to distribute desired amount of energy automatically
as per following rules:

1. Get the new energy level through sensor (lt at
time t)

2. Compute the rate of distribution of energy (rt)
based on

• new energy level (lt) and some
previous level (say k) values
(L = {lt−k, lt−k−1, . . . , lt−1})

3. Compute the new energy to be distributed (et)
based on

• computed rate of distribution
(rt), current distribution (lt) and
previously (say k) distributed energies
(E = {et−k, et−k−1, . . . , et−1})

4. Distribute the computed energy (et).

The control application implements each of the
above step as a module that is specified by
corresponding pre and post-conditions and invariant.
Our goal is to protect the application execution
against variants of a command manipulation
attack Li (2011) that is a computational attack.
A typical command manipulation attack can be
launched by performing the following two tasks:

1. illegitimate access to the relevant resources

2. modify a command (i.e. instructions that
implement the rules) to achieve the malicious
goal.

As an example, we consider the command that
computes the new energy distribution as per rule 3
above. We formalize the attack into declaration and
definitive properties in the following subsections.

2.0.1. Declarative Properties
The declarative properties of the attack can be
formalized as follows

〈nco, σ, ρ〉y 〈α,σ′, ρ′〉
which says that an application (i.e., command
sequence) execution nco with the given state σ,
run-time environment ρ may yield a state σ′ and
environment ρ′ with an attack α in a single step. Here
σ is a memory store (i.e., a set of pairs of variables
and its values), ρ is a run-time environment (i.e., a
set of pairs of identifier and its types).

Based on the above formulation, we formalize the
example attack as follows:

et = computeEnergy(rt, lt,D)
α == ”A”⇔ ¬sa f e(et)
〈computeEnergy(rt, lt,D), s,re〉y 〈α, s′,re′〉

where

sa f e(et) ⇔ et ≤ max single energy ∧
today energy + et ≤ max day energy
lt < max sa f e lvl

The rule states that execution of an application com-
ponent (computeEnergy) in state s (and environment
re) may yields state s′ (and environment re′) with an
attack class α(A) iff the critical conditions (sa f e) are
violated, namely when

1. new computed energy distribution is greater
than the maximum allowed single distribution
(i.e. equals maximum load of wires in home) or

2. sum of new computed energy and cumulative
energy for today is greater than the maximum
allowed distribution of energy in a single day or

3. when measured distribution level is extremely
high; This property can be both be safety and
security threat.

The formalization assures detection of an attack
without considering intermediate steps of the attack,
namely either the output value et has updated
or implementation of rule 3 has been modified.
This allows to verify within real-time constraints, if
the application is under attack. When an attack is
detected, the application runs in fail-safe mode and
attempts to determine the exact attack.

2.0.2. Definitive Properties
The definitive properties formalize an exact attack
of the class (as identified by declarative properties).
The definitive properties can be formalized as follows

〈nco, σ, ρ〉y∗ 〈α,σ′, ρ′〉

3

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

which says that an application (i.e., command
sequence) execution nco with the given state σ,
run-time environment ρ may yield a state σ′ and
environment ρ′ with an attack α in many small-steps.

Based on the above formulation, we formalize the
variants of example command manipulation attack
as follows:

et = computeEnergy(rt, lt,D)
p = diagnose(computeEnergy(rt, lt,D), inv(et))

IF p == START THEN α = ”A1”
ELSE IF p == END THEN α = ”A3” ELSE α = ”A2”
〈computeEnergy(et, lt,D), s,re〉y∗ 〈α, s′,re′〉

where

diagnose(cmd, cnd) : INSTRUCTION ∪ START ∪ END

returns the position of an instruction in the program
(cmd) which has violated the given condition (cnd).
The position can be START, i.e. just before the
method (body), END, i.e. just after the method (body)
or any INSTRUCTION of the method body.

The rule states that an application execution of
module computeEnergy in state s (and environment
re) may yield state s′ (and environment re′) with an
exact attack α s.t.

1. if α is A1, then measured distributed level has
been compromised or threatened,

2. if α is A2, then result of the function (shared
through sensor) has been compromised only
and

3. if α is A3, then some instruction has been
compromised/modified.

In the following subsection, we argue about method
to generate run-time security monitor based on the
formalization above.

3. SECURITY MONITOR

Based on the material from Khan (2019), in this
section, we sketch the approach for synthesis of
the security monitor from the previously developed
specification. The monitor ensures that smart home
control application is secure against known attacks
(e.g., command manipulation in current example)
at run-time without hindering its performance
requirement so as to ensure negligible damage.

Based on deductive synthesis Khan (2018), we
derive security monitor through refinement of the
attack models (i.e., declarative properties) w.r.t.

application specification. The refinement starts
with an initial (non-deterministic) attack model
with concealed performance requirements. Then,
the model is synthesized through step-wise and
interactive refinements, where each refinement
optimizes certain model formulation in a way that
no extra behavior is introduced on one hand, and
none of the security properties are violated on the
other hand. Finally, the model is translated into
a fully deterministic implementation of a monitor
that is correct w.r.t. specification of attack classes
and is also secure and efficient, respecting real-
time performance constraints by employing efficient
representations and algorithms.

Example

To evaluate the methodology Khan (2019), we
generate a security monitor for our running example
of energy controller. For simplicity, we generate
monitor in a familiar notation, i.e. Java-like syntax as
shown in Listing 3.

For our example controller specification (Listing 1), in
each specific period of time (say 10 seconds), reads
energy level of the (see l.12) and then either the
controller DISTRIBUTEs some amount of energy to
the connected devices (see l.70), or does NOTHING
(see l.71). Initially, the energy level is undefined (see
l.6). At any specific interval, the new energy level is
read, if the energy level (i.e. reading) is in the range
of sensor accuracy (see l.13), then we either accept
the value or any value (see l.15). After each specific
interval of time (see l.69), the controller either

• DISTRIBUTEs energy, i.e. the controller first
computes the desired amount of energy such
that energy level becomes safe (see l.45-58)
and then distributes the desired amount of
energy to the devices (see l.70),

• or does NOTHING, i.e. the controller concludes
that the energy level of the devices does not
require any more energy (see l.45-58) and thus
does NOTHING (see l.71).

Considering the command manipulation attack, the
specification describes the following two possible
attack scenarios:

1. data integrity attacks (case A1) – in which
the command parameter is compromised or
is critically high, i.e. the energy (sensor)
distribution gets compromised (see l.68) and
(case A2) – in which the sensor based
measured energy level is compromised (see
l.42)

4

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

1 public enum Action {DISTRIBUTE , NOTHING}
2 public enum Rate { DECREASING , NORMAL , INCREASING}
3 public enum Level {FALLING , NORMAL , RISING}
4

5 class EnergyControllerSpec {
6 private int enrgy_lvl = -1;
7 private ArrayList <int > enrgy_dists= new ArrayList

<int >();
8 private ArrayList <int > enrgy_lvls= new ArrayList <

int >();
9 private final int N = 2;

10 ...
11

12 public void readEnergy(int reading){
13 if(abs(reading) > SENSOR_ACCURACY)
14 if(enrgy_lvl > 0)
15 enrgy_lvl = { (reading | True)}; }
16

17 // computing effect of energy
18 public Level computeLevel (){
19 Level lvl =
20 { v | (v = FALLING -> enrgy_lvl < enrgy_lvls[N

])
21 /\ (v = NORMAL -> enrgy_lvl == enrgy_lvls[N])
22 /\ (v = RISING -> enrgy_lvl > enrgy_lvls[N])

};
23 return lvl;
24 }
25

26 // computing rate of energy distribution
27 public Rate computeDistributionRate (){
28 Rate rate =
29 { r | (r = DECREASING ->
30 (enrgy_lvl -enrgy_lvls[N]) <(enrgy_lvls[N]-

enrgy_lvls[N-1]))
31 /\ (v = NORMAL ->
32 (enrgy_lvl -enrgy_lvls[N])==(enrgy_lvls[N]-

enrgy_lvls[N-1]))
33 /\ (v = INCREASING ->
34 (enrgy_lvl -enrgy_lvls[N]) >(enrgy_lvls[N]-

enrgy_lvls[N-1]))};
35 return r;
36 }
37

38 // computing next distribution of energy
39 public int computeEnergy (){
40

41 // attack A1 specification
42 enrgy_lvl < max_safe_lvl
43

44 // computing energy distribution
45 int enrgy_dist = 0;
46 Level lvl = computeLevel ();
47 Rate r = computeRate ();
48

49 if(enrgy_lvl <= max_safe_lvl){
50 if(rate == DECREASING) enrgy_dist = 0;
51 else if(rate == INCREASING)
52 enrgy_dist = min_single_dist+enrgy_dists[N

]/3;
53 }else{
54 if(lvl == RISING)
55 enrgy_dist = min_single_dist+enrgy_dists[N

]/3;
56 else if(lvl == NORMAL || lvl == FALLING)
57 enrgy_dist = min_single_dist;
58 else enrgy_dist = 0;
59 }
60

61 // attack A3 specification
62 enrgy_dist <= max_single_dist && enrgy_dist +

today_dists <= max_day_dist
63 return enrgy_dist; }
64

65 // send command to controller for energy
distribution

66 public Action distributeEnergy(int enrgy_dist){
67 // attack A2 specification
68 enrgy_dist + today_dist <= max_day_dist
69 Action act =
70 { a | (a = DISTRIBUTE -> enrgy_dist > 0)
71 /\ (a = NOTHING -> enrgy_dist = 0)};
72 }
73 }

Listing 1: Energy Controller + Attack Specification

2. computational attack (case A3) – in which
the command computational code is compro-
mised, i.e. the instruction(s) in the implemen-
tation is modified (see l.62) such that they
now compute energy values, which are either
undesired for the devices or damaging to the
network.

Based on various design choices, we synthesize
the specification (Listing 1) to derive the Java
implementation for the controller (Listing 2) and for
the corresponding security monitor (Listing 3).

The controller implementation corresponds to the
controller specification. Additionally, the controller
implementation (Listing 2) has calls (see l.60 and
l.53) to monitor (Listing 3) which eventually enables
the security monitor to detect data attacks – A1 and
A2 (see l.7 and l.23) and a computational attack –
A3 (see l.14). The deductive synthesis assures that
the controller implementation is correct and secure
by construction with respect to the specification
of controller and attacks. Clearly, the monitor is
capable of rigorously detecting any arbitrary data
and computational attack in embedded software
based controllers and thus highly assuring the safety
and security of patients.

4. CONCLUSION

We have argued that the evaluated approach for run-
time verification is effective. The approach allows to
model known threats that can later be synthesized
into runtime security monitor that assures the
security of application execution against the threats
(i.e. data integrity or false data injection and insider
attacks) strictly respecting application’s efficiency
requirements. In future, we plan to build verification
methods to detect unknown (i.e., hypothetical)
attacks to critical control applications to assure more
accurate medical diagnosis and other operations.

ACKNOWLEDGEMENT

Dimitrios Serpanos acknowledges that part of this
work that was performed at ISI/ATHENA was
supported by the project ”I3T - Innovative Application
of Industrial Internet of Things (IIoT) in Smart
Environments” (MIS 5002434) which is implemented
under the ”Action for the Strategic Development
on the Research and Technological Sector”, funded
by the Operational Programme ”Competitiveness,
Entrepreneurship and Innovation” (NSRF 2014-
2020) and co-financed by Greece and the European
Union (European Regional Development Fund).

5

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

1 ...
2 class EnergyControllerCode {
3 private int enrgy_lvl = -1;
4 private ArrayList <int > enrgy_dists=new ArrayList <

int >();
5 private ArrayList <int > enrgy_lvls=new ArrayList <

int >();
6 private final int N = 2;
7 ...
8

9 public void readEnergy(int reading){ enrgy_lvl =
reading; }

10

11 // computing effect of energy
12 public Level computeLevel (){
13 if(enrgy_lvl < enrgy_lvls[N]) return

Level.FALLING;
14 else if(enrgy_lvl == enrgy_lvls[N]) return Level

.NORMAL;
15 else if(enrgy_lvl > enrgy_lvls[N]) return Level.

RISING;
16

17 return Level.NORMAL;
18 }
19

20 // computing rate of energy change
21 public Rate computeRate (){
22 if((enrgy_lvl -enrgy_lvls[N]) <(enrgy_lvls[N]-

enrgy_lvls[N-1]))
23 return Rate.DECREASING;
24 else if((enrgy_lvl - enrgy_levels [2]) >= (

enrgy_levels [2] - enrgy_levels [1]))
25 return Rate.INCREASING;
26 else return Rate.NORMAL;
27 }
28

29 // computing next distribution of energy
30 public int computeEnergy (){
31

32 // monitor attack A1 , if sensor input is
compromised

33 monitorComputeEnergyPre(enrgy_lvl);
34

35 // computing energy distribution
36 int enrgy_dist = 0;
37 Level lvl = computeLevel ();
38 Rate rate = computeRate ();
39

40 if(enrgy_lvl <= max_safe_lvl){
41 if(rate == DECREASING) enrgy_dist = 0;
42 else if(rate == INCREASING)
43 enrgy_dist = min_single_dist+enrgy_dists[N

]/3;
44 }else{
45 if(lvl == RISING)
46 enrgy_dist = min_single_dist+enrgy_dists[N

]/3;
47 else if(lvl == NORMAL || lvl == FALLING)
48 enrgy_dist = min_single_dist;
49 else enrgy_dist = 0;
50 }
51

52 // monitor attack A3 , if computation is
modified

53 monitorComputeEnergyPost(enrgy_dist);
54

55 return enrgy_dist; }
56

57 // send command to controller for distributing
given energy

58 public Action distibuteEnergy(int enrgy_dist){
59 // monitor attack A2 , if sensor input is

compromised
60 monitorDistributeEnergyPre(enrgy_dist);
61 if(enrgy_dist != 0) return DISTRIBUTE;
62 else return NOTHING;
63 }
64

65 }

Listing 2: Energy Controller Code

1 class Monitor {
2

3 private int max_safe_lvl = 300;
4 ...
5

6 // monitoring attack scenario A1
7 // if measured enrgy level is malicious
8 public bool monitorComputeEnergyPre(int

enrgy_lvl){
9 if(enrgy_lvl >= max_safe_lvl){

10 suspendExecution (); return false; }
11 return true; }
12

13 // monitoring attack scenario A2 ,
14 // if command (distribution amount) has been

modified
15 public bool monitorDistributeEnergyPre(int

enrgy_dist){
16 if (enrgy_dist + today_dists > max_day_dist){
17 suspendExecution (); return false; }
18 return true;
19 }
20

21 // monitoring attack scenario A3 ,
22 // if computations have been modified
23 public bool monitorComputeEnergyPost(int

enrgy_dist){
24 if (enrgy_dist > max_single_dist ||
25 enrgy_dist + today_dists > max_day_dist){
26 suspendExecution (); return false; }
27 return true;
28 }
29 }

Listing 3: Security Monitor Code

REFERENCES

W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and
H. Zhu (2018) Homonit: Monitoring smart home
apps from encrypted traffic, in Proceedings of
the ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York,
USA: ACM, pp. 1074–1088.

M. Tiloca, K. Nikitin, and S. Raza (2017, Axiom:
Dtls-based secure iot group communication, ACM
Trans. Embed. Comput. Syst., vol. 16, no. 3, pp.
66:1–66:29.

M. B. Soudan, H. M. Al Rifaie, T. M. Asmar,
and S. Majzoub (2018) Smart home energy
management system: An exploration of iot use
cases, in Advances in Science and Engineering
Technology International Conferences (ASET), pp.
1–5.

M. T. Khan, D. Serpanos, and H. Shrobe (2016) A
rigorous and efficient run-time security monitor for
real-time critical embedded system applications, in
IEEE 3rd World Forum on Internet of Things (WF-
IoT), pp. 100–105.

I. Cassar, A. Francalanza, L. Aceto, and
A. Ingólfsdóttir (2017) A survey of runtime
monitoring instrumentation techniques.

N. Li, A. Raghunathan (2011) Hijacking an insulin
pump: Security attacks and defenses for a dia-
betes therapy system, in IEEE 13th International
Conference on e-Health Networking, Applications
and Services, pp. 150–156.

6

On Synthesis of Runtime Security Monitor for Real-time IoT Applications
Khan • Serpanos • Shrobe

CAPEC, Online (2019). Available: https://capec.
mitre.org

A. Chlipala (2016) Ur/web: A simple model for
programming the web, Commun. ACM, vol. 59,
no. 8, pp. 93–100.

D. Kästner, J. Barrho, U. Wünsche, M. Schlickling,
B. Schommer, M. Schmidt, C. Ferdinand, X. Leroy,
and S. Blazy (2018) CompCert: Practical Expe-
rience on Integrating and Qualifying a Formally
Verified Optimizing Compiler, in ERTS2 2018 -
Embedded Real Time Software and Systems.
Toulouse, France.

A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes,
W. Keen, A. Pathirane, O. Shepherd, P. Vrabel,
and A. Zaidi (2016) End-to-end verification of arm
processors with isa-formal, in Computer Aided
Verification, S. Chaudhuri and A. Farzan, Eds.
Cham: Springer International Publishing, pp. 42–
58.

M. T. Khan, D. Serpanos, and H. Shrobe (2018),
Armet: Behavior-based secure and resilient indus-
trial control systems, Proceedings of the IEEE, vol.
106, no. 1, pp. 129–143.

M. T. Khan, M. Pinzger, D. Serpanos, and H. Shrobe
(2019) Runtime protection of real-time critical
control applications against known threats IEEE
Design & Test, no. In Review.

B. Delaware, C. Pit-Claudel, J. Gross, and A. Chli-
pala (2015) Fiat: Deductive synthesis of abstract
data types in a proof assistant in Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL, Mumbai, India, pp. 689–700.

7

https://capec.mitre.org
https://capec.mitre.org

	Introduction
	Modeling Known Threats
	Declarative Properties
	Definitive Properties

	Security Monitor
	Conclusion

